Comparison of Dimensionality Reduction Methods for Wood Surface Inspection

نویسندگان

  • Matti Niskanen
  • Olli Silvén
چکیده

Dimensionality reduction methods for visualization map the original high-dimensional data typically into two dimensions. Mapping preserves the important information of the data, and in order to be useful, fulfils the needs of a human observer. We have proposed a self-organizing map (SOM)based approach for visual surface inspection. The method provides the advantages of unsupervised learning and an intuitive user interface that allows one to very easily set and tune the class boundaries based on observations made on visualization, for example, to adapt to changing conditions or material. There are, however, some problems with a SOM. It does not address the true distances between data, and it has a tendency to ignore rare samples in the training set at the expense of more accurate representation of common samples. In this paper, some alternative methods for a SOM are evaluated. These methods, PCA, MDS, LLE, ISOMAP, and GTM, are used to reduce dimensionality in order to visualize the data. Their principal differences are discussed and performances quantitatively evaluated in a few special classification cases, such as in wood inspection using centile features. For the test material experimented with, SOM and GTM outperform the others when classification performance is considered. For data mining kinds of applications, ISOMAP and LLE appear to be more promising methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images

Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...

متن کامل

2D Dimensionality Reduction Methods without Loss

In this paper, several two-dimensional extensions of principal component analysis (PCA) and linear discriminant analysis (LDA) techniques has been applied in a lossless dimensionality reduction framework, for face recognition application. In this framework, the benefits of dimensionality reduction were used to improve the performance of its predictive model, which was a support vector machine (...

متن کامل

Laser Diffuse Lighting in a Visual Inspection System for Defect Detection in Wood Laminates

Nowadays, wood companies are ever more interested in automatic vision systems (Li & Wu, 2009), (Åstrand & Åström, 1994), for an effective surface inspection that greatly increases the quality of the end product (Smith, 2001), (Armingol et al., 2006). The inspection process, in most visual inspection systems, pursues online defects identification, to reach optimum performance (Malamas et al., 20...

متن کامل

Clustered Multidimensional Scaling with Rulkov Neurons

When dealing with high-dimensional measurements that often show non-linear characteristics at multiple scales, a need for unbiased and robust classification and interpretation techniques has emerged. Here, we present a method for mapping high-dimensional data onto low-dimensional spaces, allowing for a fast visual interpretation of the data. Classical approaches of dimensionality reduction atte...

متن کامل

Effective semi-supervised nonlinear dimensionality reduction for wood defects recognition

Dimensionality reduction is an important preprocessing step in high-dimensional data analysis without losing intrinsic information. The problem of semi-supervised nonlinear dimensionality reduction called KNDR is considered for wood defects recognition. In this setting, domain knowledge in forms of pairs constraints are used to specify whether pairs of instances belong to the same class or diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003